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Exercise 1 (Curvature): [2 points] 

Derive the curvature function      for the following functions: 
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)                       (
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Exercise 2 (Osculating circle): [2+2 points] 

a. Show that the curvature of a circle with radius   is given by   
 

 
 . 

b. The evolute of a curve is the locus of all its centers of curvature (centers of osculating circles).  

Sketch the evolute for the ellipse below and the osculating circle for the marked points. 

 

 

 

 

 

 

 

Exercise 3 (Least-Squares Approximation): [4 points] 

Given   sample points (
  

  
) (

  

  
)     , how do you find the center (

 
 
) and radius   of the best 

fitting circle in an algebraic sense? 

Hint:  Represent the circle as an implicit function. 

Substituting            may be helpful to reduce the degree of the error function (this 

means effectively solving for (a,b,c) instead of (a,b,r). 

 

Exercise 4 (Principal Component Analysis): [1 point] 

Sketch the normal, tangent and the PCA ellipsoid for the marked points and their neighbors in the 

following 3 diagrams (no calculations necessary, a rough sketch is sufficient) : 

 

 

 

 

 

  

 
 

 
 

 



Exercise 5 (Total Least Squares): [7+2 points] 

Given n points p1,…,pk in three dimensional Euclidean space, a best fitting plane in a least-squares 

sense can be computed by PCA (principal component analysis). The procedure is the following: 

 Compute the average 



n

i
iav

n 1

1
pp . Subtract this from every point: avii ppd   

 Form the scatter matrix 
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 The plane is defined by the average pav as one point in the plane and the eigenvector 

of S with the smallest eigenvalue as the normal of the plane (we assume this vector to 

be uniquely determined up to sign and length). 
 

An alternative approach to plane fitting is “plate tensor voting”. The procedure is the following: 

 Compute the average as before. 

 Compute the vector from the average to each point, denoted by di. Let li = ||di|| be 

the length of the vector. 

 Form the matrices Mi = liI – [di]
 ·[di]

T. 

 Average all the matrices Mi: 
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 Compute the normal vector as eigenvector corresponding to the largest eigenvalue of 

M. The plane is defined by this normal vector and the average point (same point as 

before). 

 

a. Show formally that both schemes compute the exact same solution (i.e., the same plane). 

You can assume that all eigenvalues are different so that the plane is uniquely defined. 

b. Explain in 1-2 sentences what the matrices Mi represent intuitively (hint: the name of the 

scheme is derived from this observation). Why do we expect them to sum up to a matrix for 

which the eigenvector with largest eigenvalue is the normal of the plane? (1-2 sentences are 

sufficient). 

 


